
Alle Ezelsbruggetjes
Maak je moeilijke lesstof onvergetelijk met een ezelsbruggetje. Zoek ezelsbruggetjes per vak, of leer anderen leren met jouw ezelsbruggetjes.
Bereik en domein
Het bereik –> de hemel, omhoog, de y-as
Het domein –> de vlakte, in de lengte, de x-as
pi uitrekenen
may i have a large container of coffee beans
may 3
i 1
have 4
a 1
large 5
container 9
of 2
coffee 6
beans 5
3,14159265
Het verschil tussen de omtrek en de oppervlakte
Om dit verschil te onthouden, kun je denken aan
OM = OM en OP = OP
Omtrek = omheen lopen
Oppervlakte = op lopen
Berg- of dalparabool
Als je blij bent (dus positief) heb je een lachende mond (zelfde vorm als dalparabool). Als je verdrietig bent (dus negatief), heb je een droevige mond (zelfde vorm als bergparabool).
Het verschil tussen < en >
Om het verschil tussen < en > te onthouden, kun je denken aan dit trucje
Als je een K van het teken kan maken, dan betekent het kleiner dan.
Daarom: < betekent kleiner dan!
Het andere teken betekent groter dan, van > kan je geen K maken.
Daarom: > betekent groter dan!
Toa, Sos, Cas
Toa, Sos. Cas
Tangens = overstaande : aanligende
Sinus= overstaande: schuine
Cosinus= aanligende : schuine
Wiskundige vergelijking (x,y)
Als je tussen haakjes werkt, komt eerst de x en dan de y. De x staat ook eerder in het alfabet.
SCHERP OF STOMP GRADEN
Scherp= de buitenste en de scherpste strakste lijn
Stomp=de binnenste de ronde lijn.
Logaritmen en kwadraten
Welk getalletje uit een kwadraat zet je waar in het logaritme??
A^b=C
De uitkomst van het kwadraat moet altijd in de Log komen te staan.
Verder: wie zichzelf vernedert zal verhoogt worden (en andersom)
Dit betekend dat de A omhoog gaat (word het getalletje linksbovenaan de Log) en b gaat naar beneden (word de uitkomst van de Log)
Zo krijg je:
A^b=C -> ^ALog(C)=B
Ook te onthouden als:
□^♡=☆
^□Log(☆)=♡
Goniometrie; SOL, CAL, TOA (Bij rechthoekige driehoeken)
SOL: sin(α) = overstaande (rechthoekszijde) ÷ langste zijde
CAL: cos(α) = aanliggende (rechthoekszijde) ÷ langste zijde
TOA: tan(α) = overstaande (rechthoekszijde) ÷ aanliggende (rechthoekszijde)
SOS/CAS zijn hetzelfde als SOL/CAL, maar een schuine zijde kan soms lastig te herkennen zijn.
km-hm-dam-m-dm-cm-mm
kan het dametje met de centimeter meten
km=kan
hm=het
dam=dametje
m=met
dm=de
cm=centimeter
mm=meten
Omrekenen
Om te onthouden dat 1 kilo = 2 pond = 10 ons, kun je het volgende doen
Breng je handen samen (1 kilo), maak nu twee vuisten (2 pond), laat al jouw vingers zien (10 ons)
Volgorde van bewerkingen
Het Mannetje Won Van De Oude Aap
Het -> haakjes
Mannetje-> machten
Won-> worteltrekking
Van-> vermenigvuldig
De-> delen
Oude-> optellen
Aap-> aftrekken
Factoren van 5 vermenigvuldigen
Om 25×25 gemakkelijk te berekenen, kun je dit trucje gebruiken.
20×30 = 600 + 5×5= 25, dus 25×25 = 625
Dit werkt bij alle factoren van 5
Bijvoorbeeld;
75×75 = 5625 –> 70×80= 5600 + 5×5=25 –> 5625
Diameter en straal
Het verschil tussen een diameter en een straal is soms lastig te onthouden. Diameter is een langer woord dan straal. In een cirkel kun je de korte en de lange lijn onderscheiden door te bedenken dat diameter de lange lijn is en dat straal de korte lijn is, omdat straal een korter woord is dan diameter.
Berg of dalparabool
Als er een – voor de x staat, is het negatief dus 🙁 berg
Als er een plus staat is het positief dus 🙂 dal
Het verschil tussen convex en concaaf
Om dit verschil te onthouden, kun je denken aan het Franse ‘la cave’, wat kelder betekent. Een kelder is hol
Concaaf = hol
Convex = bol
Rekenkundige bewerkingen
Hoe Moeten We Van Die Onvoldoendes Afkomen?
H= Haakjes
M= Machtsverheffen
W= Worteltrekken
V= Vermenigvuldigen
D= Delen
O= Optellen
A= Aftrekken
Tafel van 9
9 x 1 = 0 9
9 x 2 = 1 8
9 x 3 = 2 7
9 x 4 = 3 6
9 x 5 = 4 5
9 x 6 = 5 4
9 x 7 = 6 3
9 x 8 = 7 2
9 x 9 = 8 1
9 x 10 = 9 0
Vlakke meetkunde
FOX-Z
F-hoeken zijn gelijk aan elkaar
O:Hoeken die in een cirkel van 360 graden staan vormen een volle hoek ( 4 x 90 )
X: overstaande hoeken zijn gelijk
-: Alle drie de hoeken van een driehoek passen op een rechte lijn: een gestrekte hoek van 180 graden
Z-hoeken zijn gelijk
Formule voor Inhoud
Deze formule kun je onthouden aan de hand van de zin
Leuke BH met Inhoud
Inhoud = LxBxH.
Het verschil tussen de teller en de noemer
Om te onthouden waar de teller en de noemer komen in een breuk, kun je denken aan T = T
Teller = Top
Cijfers van pi
De precieze cijfers van pi kan je onthouden met de zin ‘Yes I want a pizza, yesterday we wanted pizza, yes pizza!
De hoeveelheid letters per woord staan voor een getal van pi. En het verhaal gaat nog over pizza ook!
Pi is dus: 3,1415926535
maaltafel 9
9×1=9
9×2=18
9×3=27
9×4=36
9×5=45
9×6=54
9×7=63
9×8=72
9×9=81
9×10=90
Dus als je goed kijkt komen er telkens bij de tientallen een bij, en bij de eenheden gaat er telkens een af.
De vlakken van een vierkant
Deze kun je onthouden met ROBijnZoekers
R ibbe
O ndervlak
B ovenlak
Z ijvlak
